
Implicit Bias towards the Kernel Regime
Causes Mode Collapse in GANs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative adversarial networks (GANs) are state-of-the-art generative models1

but are notoriously difficult to train and often suffer from mode collapse. Many2

GAN variants have been proposed to tackle it and have led to improvements, but3

the underlying mechanism driving the issue remains poorly understood. In this4

paper, we demonstrate that the implicit bias (IB) of the GAN generator hinders5

its ability to capture modes. First, we develop a theoretical characterization of6

optimal generator functions for 1-dimensional data distribution. We characterize7

the constraints that optimal polytonic generators have to satisfy, and show that8

they may possess more discontinuities between modes. Next, we hypothesize that9

three factors – overparameterization, larger weight initialization scale, and lower10

adaptivity in the optimizer – implicitly bias the generator towards the kernel regime,11

reducing its ability to approximate discontinuities and thus causing mode collapse12

and mixtures. We run experiments and perform causal analysis using instrumental13

variables to verify our hypothesis. Our analysis suggests IB in the kernel regime14

causes bad GAN performance. And finally, we empirically verify our findings15

on MNIST and show that we can improve GAN performance by using smaller16

networks or just reducing the generator’s initialization scale.17

1 Introduction18

Generative adversarial networks (GANs). GANs are state-of-the-art generative models for a19

variety of tasks, such as generating images, audios, or videos, which can be used for data augmentation20

and creative works. However, they are notoriously difficult to train. A non-trivial amount of effort is21

required to design architecture, objectives, and training schemes to avoid issues like mode collapse22

and mode mixture [Gulrajani et al., 2017, Miyato et al., 2018, Wang et al., 2019] However, the23

underlying mechanism for mode collapse is still poorly understood. Is it due to the difficulty of its24

task? Or is it because G is parameterized by a neural network (NN)?25

Generator as a transport map. The task of G is to approximate a transport map from a unimodal26

distribution, such as a uniform or Gaussian distribution, to a real data distribution, which in most cases27

is a multimodal distribution. The optimal transport map under some mild conditions is discontinuous28

[Villani, 2009], which is challenging for NNs to approximate [An et al., 2020a]. When G fails to29

approximate the discontinuities, mode mixture or mode collapse will arise. To tackle this, variants30

of GANs have been proposed, e.g. using a multimodal latent distribution [Xiao et al., 2018], using31

multiple generators [Hoang et al., 2018], and instead of approximating the transport map directly,32

approximating the Brenier potential of the transport map [An et al., 2020b].33

The remaining mysteries. First, while people acknowledge that the optimal G is discontinuous, it34

is unclear what other property it has. Hence, we attempt to characterize them in 1D and find they can35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



be polytonic (See Def. 1), which may have more discontinuities than needed. We will describe the in36

detail in Section 3.37

Second, while the proposed solutions above all reduce the difficulty of the task for G, each requires38

non-trivial modifications to the model architecture, objectives, etc. From a more fundamental point39

of view, we are curious why it is challenging for an overparameterized G, which has sufficiently40

expressive power to approximate discontinuities. What implicitly biases a NN away from doing so?41

This kind of mechanistic-level questions motivates a rich literature on the inductive bias (IB) of NN42

(see Section 2). The key is that overparameterization and large scale of initialization bias NNs to43

the kernel regime, where parameters barely change. However, in this line of work, less attention is44

given to GANs. Schaefer et al. [2020] discuss the impact of the implicit competitive regularization,45

showing that it introduces additional stable points for the training. However, ICR is primarily induced46

by competitive training, not by NNs themselves. And their analysis only focuses on the discriminator.47

Our hypothesis is that IB of G is in tension with the need of approximating discontinuities. The more48

it is in the kernel regime, the less capable it is to do so.49

Main Contributions. In this work, we systematically study the impact of IB on GAN performance,50

by first characterizing the polytonicity in the optimal G, then confirming our hypothesis with51

experiments interpolating from the adaptive regime to the kernel regime, and finally identify the52

causal impact of IB. Our main contributions include:53

1. We find that allowing polytonicity in a 1D generator (G) is seemingly more flexible but54

requires more discontinuities, especially in low data density regions. Experiments confirm55

that polytonicity does exist.56

2. We perform causal analysis showing that G being more in the kernel regime causes worse57

GAN’s performance, i.e. when G is in the kernel regime, achieved by overparameterization,58

large scale of initialization, or lack of adaptivity in optimizers.59

3. Experiments on MNIST show similar results that overparameterization or large scale of60

initialization hurts GAN performance. By simply turning down the scale, we obtain better61

generated images. We argue that our findings provide insights on the implicit bias on GANs62

and suggest small width or scale for hyperparameter search.63

Next, this work is presented as follows: in Section 2, we briefly review the literature on IB and64

discontinuities in G. In Section 3, we characterize the polytonicity in optimal G in 1D. In Section 4,65

we propose our hypothesis on how IB impacts GAN performance. And in Section 5, we present66

experimental results and causal analysis on the impact.67

2 Related Work68

Implicit bias (IB) in neural networks (NNs). It is shown in recent work that NNs exhibit hidden69

biases that are determined implicitly. The implicit bias (IB) of deep linear NNs (including Convnets)70

and deep nonlinear NNs in the kernel regime has been uncovered [Jacot et al., 2018, Gunasekar et al.,71

2018, Chizat et al., 2019, Sahs et al., 2020, Woodworth et al., 2020, Moroshko et al., 2020], but the72

IB of nonlinear architectures remains an area of active research [Novak et al., 2019, Sahs et al., 2020,73

Caro et al., 2020, Geiger et al., 2020, Baratin et al., 2021]. Nevertheless, it is clear that the IB of a74

NN usually takes the form of an implicit regularizer (IR) that depends on 1) the parameterization75

or architecture, 2) the learning algorithm or optimizer, and 3) the initialization scheme [Chizat76

et al., 2019, Woodworth et al., 2020]. A strong IR biases NNs towards the kernel or lazy-training77

regime, where the NN parameters remain around their initialization, allowing approximations such as78

linearizing the network using the neural tangent kernel (NTK) [Jacot et al., 2018, Lee et al., 2019].79

The counterpart of this regime is called the adaptive or feature-training regime, where NNs are able to80

learn the features and align them quickly [Baratin et al., 2021], resulting in highly non-linear behavior.81

All these work focus on regression or classification tasks that only involve one NN. However, GANs82

involve 2 NNs playing a game: while the discriminator’s (D) task seems to be still classification,83

the generator’s (G) task is nothing similar to regression or classification. Hence, there is a need to84

systematically study the impact of IB in GANs.85

Implicit bias in GANs. There is much less work on IB in GANs. Intuitively, there are at least 486

components whose IB needs our attention: 1) IB of G, 2) IB of D, 3) IB of competitive training on87
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Figure 1: Initial and final generator functions trained by SGD. Left to Right: H = 128, He
initialization; H = 128, V-shape initialization; H = 2048, He initialization; H = 2048, V-shape
initialization. Grey and blue histograms show the distribution of latent noise and data generated by
the trained generator shown in the blue curve. The orange and green curves show the initial generator
and the optimal monotonic generators. Smaller GANs approximate green lines well, while larger
GANs have fluctuation in the learned function (cf. Geiger et al. [2020]). V-shape init biases to
polytonic generators, which have more discontinuities.

G, and 4) IB of competitive training on D. Schaefer et al. [2020] focuses on 4) and demonstrates that88

implicit competitive regularization (ICR) introduces additional stable points (or regions) which do89

not exist when only training one player while keeping the other fixed. They argue that ICR is the90

reason why D seems to be able to guide G, rather than exploiting the misalignment of the supports91

of real and fake data. We believe for G, the counterpart effect 3) is similar but harmful. ICR may92

prevent G from matching densities since to do so requires G to approximate discontinuities which is93

not suitable for NNs, which may imply that the volume of the region of solutions is relatively smaller.94

Then, the additional stable points may drag G away from these solutions. But in this work, we focus95

primarily on 1), leaving 2,3) as future directions.96

Recently, Balaji et al. [2021] show that an overparameterized GAN converges fast to a global saddle97

point. It says less about the GAN performance since the GAN loss does not directly reflect the98

quality of generated data. Although their experiments show that overparameterized GANs perform99

better, they only used a relatively small learning rate for all settings. Empirically, we observe smaller100

learning rates work well for larger networks, and we think it is fairer to choose the best learning rate101

for each network size.102

Discontinuity in the generator. It is well-known that discontinuities cause troubles in GAN103

training [Xiao et al., 2018, Hoang et al., 2018, Tanielian et al., 2020, An et al., 2020a], but there is104

few discussions on other properties of the optimal generator function. Specifically, the polytonicity105

(Def. 1) in the optimal generators has not been addressed. We argue that the discontinuities in optimal106

monotonic generators already pose a difficulty for a NN, the issue only gets worse if there are more107

than needed. Hence, in the next section, we provide a characterization for this.108

3 Characterization of Optimal Polytonic Generators for a 1D Target109

Probability Density110

In this section, we show that in 1D, the optimal generator can be polytonic. All derivations are111

deferred to Appendix A. Let fV (v) denote the probability density function (PDF) for a random112

variable V and let FV (v) denote the corresponding cumulative distribution function (CDF). We first113

define the notations as follows.114

Definition 1. A function h : Rd → R is monotonically increasing (decreasing) if x1 ≤ x2 =⇒115

h(x1) ≤ (≥)h(x2). We call h monotonic if it is either monotonically increasing or decreasing. A116

function is bitonic if it is composed of two monotonic function with different monotonicities whose117

supports intersect at only one point. Each monotonic function is called a piece. More generally, a118

function is polytonic of order p ∈ Z+ (or p-tonic) if it is composed of p connected monotonic pieces119

with alternating monotonicities.120

Assumption 1. Assume that the generator G is piecewise monotonic and differentiable, with P121

pieces {Gp : p ∈ [P ]}, each with domain Zp, range Xp and monotonicity sp = +1(−1) if increasing122
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(decreasing). Then, G(z) := Gp(z), if z ∈ Zp. Adjacent pieces Gp, Gq, ∀p, q ∈ [P ], |p − q| = 1123

have alternating monotonicities, i.e. sp · sq = −1.124

Note that each piece of h corresponds to a branch of h−1 [Trench, 2013], which refers to each portion125

of h−1 if it is multivalued. Next, In Thm. 1, we present the set of constraints that each monotonic126

piece of an optimal generator should satisfy.127

Theorem 1. Under Assumption 1, if X = G(Z) ∼ fX , where Z ∼ N (0, 1) implies that Gp must128

satisfy the constraints129 ∑
p∈P(x)

spφ(G−1
p (x))

∂uGp(z(x))
= fX(x) , ∀x ∈ X (Density Matching) (1a)

sp · ∂zGp(z) ≥ 0 , sp = (−1)p−1 · s1 , ∀p ∈ [P ] (Piecewise Monotonicity) (1b)

where P(x) := {p : Xp ∩ {x} 6= ∅, p ∈ [P ]} is the set of active pieces. φ(·) is the PDF of standard130

Gaussian distribution.131

Polytonic generators in 1D are more constrained in low-density regions. We find that given132

these constraints, a counterintuitive consequence is that polytonic generators, which seem to have133

far more degrees of freedom than monotonic ones, are more constrained in low-density regions of134

fX(x) than their monotonic counterparts. We can see this from Eq. (1a) by lower bounding Gp(z(x))135

as ∂zGp(z(x))/sp = |∂zGp(z(x))| ≥ φ(G−1
p (x))/fX(x), ∀p ∈ P(x). In the zero-density limit136

fX(x)→ 0, unless φ(G−1
p (x))→ 0, the only solution is |∂uGp(z(x))| =∞ ,∀p ∈ P(x), implying137

that low-density regions in fX force all contributing pieces of a polytonic generator to have infinitely138

large gradient norms. Geometrically, this corresponds to that a zero-slope plateau in G−1
p (x) force139

any contributing piece Gp(z(x)), p ∈ P(x) to be discontinuous, unless there is no latent noise, which140

justifies the usage of latent noise distributed as mixture of Gaussians [Xiao et al., 2018]. When using141

NNs, whose implicit bias favors continuous functions, these regions can pose significant difficulty,142

greater perhaps than with an appropriately constrained monotonic generator. Note that pieces inactive143

in low-density regions may cause local fluctuations in the function learned, as shown in Fig. 1.144

In Fig. 1, we visualize GANs trained on a 1D mixture of 3 Gaussians with SGD. With a conventional145

He initialization, we observe that a smaller-width generator may land on one of the optimal monotonic146

generators, larger-width generators have fluctuations (cf. Geiger et al. [2020]). If we intentionally147

bias G to bitonic with a V-shape initialization, indeed, more discontinuities need to be approximated.148

We also confirm the existence of polytonicity in G in Fig. 6a (see the upper right panel, G2, the 2nd149

component of G).150

4 Implicit Bias in the Context of GANs151

In this section, we first introduce a reparameterization of the parameters of a shallow (2-layer) NN,152

which will help our analyses later. Then, we propose our hypotheses on the impact of IB in the153

context of GANs, based on our understanding from the supervised learning setting.154

4.1 Breakplane Parameterization: ReLU Networks as Continuous Piecewise Linear Splines155

Definition 2. Consider a shallow ReLU NN parameterized by wi ∈ Rd, bi ∈ R and vi ∈ RD, whose156

input x ∈ Rd and output h(x) ∈ RD. For each neuron i, given NN parameters θi = (wi, bi, vi), the157

spline parameters ψi = (ξi, βi, µi) are defined as: ξi := wi/||wi||2 is the breakplane’s orientation,158

βi := −bi/||wi||2 is the breakplane’s distance from the origin, and µi := vi||wi||2 is the delta-slope.159

Then, h(x) can be written as160

y = h(x; θ) :=
H∑
i=1

viReLU(wT
i x+ bi) :=

H∑
i=1

µiReLU(ξTi x− βi), (2)

Although the mathematical form of the spline parameterization looks similar to the original one, it161

has a clear geometric interpretation: 1) Each breakplane corresponds to a hyperplane that partitions162

the domain of input. Inputs in one half space activate the neuron while those in the other do not. 2) ξi163
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points the normal direction of the corresponding breakplane. 3) βi is the distance to the breakplane164

from origin. And 4) µi is the contribution of neuron i to h(x) when x increases one unit along165

direction ξi in the active half space of i. Note that if D > 1, µi contains the neurons contribution in166

each output dimension µi,j , ∀j ∈ [D]. All dimensions share the same breakplanes. See Fig. 2 for an167

illustration in 1D in which case breakplanes become breakpoints and µi corresponds to the change of168

slope of h in the half space (left or right of the breakpoint) where neuron i is active.169

Figure 2: Breakplanes
(Breakpoints) in 1D.

Breakplane alignment. This spline parameterization is shown to be170

useful in understanding the initialization, learning dynamics, and implicit171

regularization for NNs in function space [Steinwart, 2019, Sahs et al.,172

2020]. Relating to our focus on discontinuities, it is shown in Sahs et al.173

[2020] that a single neuron rarely has a very large delta-slope. Hence, to174

implement a discontinuity in h, it typically requires many breakplanes175

to align with each other, each contributing some delta-slopes a little,176

resulting in a large |∇xh|. In the lower left and upper right panels of177

Fig, 6a, breakplanes are shown in colored lines. We observe each sharp178

transition in the function (flat to steep, steep to flat) corresponds to a set179

of breakplanes aligned.180

4.2 Hypothesis on the Impact of Kernel Regime181

We hypothesize that ifG is in the kernel regime, it will have a hard time approximating the discontinu-182

ities need for learning data distribution, while it will be more successful when in the adaptive regime.183

The reason is that when in the kernel regime, NN parameters stay around their initialization and NTK184

is fixed, while in the adaptive regime, they change fast and the neural tangent feature aligns quickly185

[Baratin et al., 2021]. From a geometric perspective (Sec. 4.1), in the kernel regime breakplane186

mobility is dramatically reduced, rendering it difficult to concentrate curvature in desired directions187

and approximate discontinuities. This will lead to poor approximations, analogous to the ‘ringing’188

phenomenon seen when Fourier Series are used to approximate step functions [Hewitt and Hewitt,189

1979]. However, in the adaptive regime, breakplanes are mobile and can align in important directions190

and approximate discontinuities with ease, which should improve mode coverage. Since Woodworth191

et al. [2020], Geiger et al. [2020], Moroshko et al. [2020] have shown that overparameterization and192

large scale of initialization both shift NN to kernel regime in the supervised learning setting, we can193

summarize that increasing width or scale of initialization causes poor GAN performance.194

It is worth to mention that Moroshko et al. [2020] show that even with large initialization, NNs can195

eventually reach the adaptive regime if trained infinitely long. However, this is impractical. Hence,196

choosing the right bias for a given problem can reduce the learning time and resources needed.197

In Section 5, we test our hypothesis by training GANs in the spectrum from kernel to adaptive regime.198

Since adaptive optimizers like RMSProp [Tieleman and Hinton, 2012] also allow NN parameters to199

change faster, we interpolate from it to SGD as well.200

5 Experimental Results201

In this section, we first show results of experiments varying hidden-layer width, adaptivity of the202

optimizer, and scale of initialization using Shallow ReLU NNs on synthetic datasets. We follow the203

common practice in modern GANs like BigGAN [Brock et al., 2018] of maintaining a balance of204

capacity between two players, varying the hyperparameters for both networks simultaneously. Then,205

we apply causal analysis on the experiment data we collected, which include hyperparameters, initial206

and final metrics of interest, and performance metrics, to identify the causal impact of implicit bias on207

GAN performance. Finally, we show experiments on real-world datasets and observe similar effects.208

Models, datasets, and training settings used are shown in Appendix C.209

5.1 Shallow ReLU GANs with Mixture of Gaussian Datasets210

We show GAN performance for each combination of H and γ in Fig. 3a, and α and γ in Fig. 3b.211

Learning rates are tuned from {10−6, 10−5.5, · · · , 10−3.5, 10−3}. In Fig. 3a, we observe GAN212

performance is the best with smaller width (512 for SGD and 128 for RMSProp), as long as the NNs213

have sufficient expressive power. Since for each H , we choose the best learning rate, we conclude214
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(a) α = 1. Left: final performance. Right: proportion of mode mixtures in generated data.

(b) Grid dataset. Left: final performance, H = 256. Right: norm of delta-slope absolute updates.

Figure 3: Top: GAN performance and proportion of mode mixtures using different widths H , RM-
SProp parameter γ, dataset, and the corresponding best learning rate. Error bars are calculated across
5 runs. Bottom: GAN performance and the average of norms of absolute updates of delta-slopes (Def.
2) using differentH , γ, α, and the corresponding best learning rate. We observe overparameterization,
large scale of initialization, and non-adaptive optimizer hurt GAN performance. Overparameterization
or SGD leads to more mode mixtures. Networks starting with small initialization have an even larger
norm of absolute updates in delta-slopes. Larger networks or SGD leads to smaller average updates.

that overparameterization actually hurts GAN performance by biasing the NNs to kernel regime.215

While this might seem opposite to previous work [Balaji et al., 2021] where they use a fixed learning216

rate, smaller networks do perform better with tuned learning rates. This can also be confirmed in Fig.217

3a, where larger networks have more mode mixtures.218

Fig. 3b shows that a moderately small scale of initialization also improves GAN performance in both219

SGD and RMSProp cases, achieving even lower KL than any cases with α = 1. This holds for both220

H = 256 and H = 2048. As we know, larger widths or scales tend to linearize the networks and221

shift them into the kernel regime, it implies there must be some properties of a GAN in the kernel222

regime that leads to mode collapse or mixture. Fig. 3b shows the update of G’s delta-slopes (see223

Section 4.1) after training. We observe NNs starting with small initialization have even larger updates224

than those with large initialization, which confirms that they are in different regimes.225

In addition, there is a clear difference in the trend between γ < 1 (even if γ is very close to 1)226

and γ = 1 (Appendix B), which correspond to RMSProp with different parameters and SGD. This227

confirms the argument in Liu et al. [2019] that adaptivity in the optimizer help improve GAN228

performance. This also justifies the common practice that people just use the default parameter of229

adaptive optimizers.230

We also run experiments, in which we only modify G, since it directly controls the quality of231

generated samples and we can exclude the possible impact from a varying discriminator. In this case,232

G still has better performance when HG = 128 is small or αG = 0.316 is small. The figures are233

shown in Appendix B.234

5.2 Identify Causal Effect of Implicit Bias on GAN Performance235

In order to explore the specific role of IB on GAN performance, we attempt to estimate the causal236

treatment effect of several metrics that serve as proxies of IB. However, we have no direct control237

over IB itself, but only the hyperparameters, which may change IB metrics and optimization metrics238

simultaneously. Due to this reason, we may get biased estimates of effects for the IB metrics. Thus,239

we make use of instrumental variables (IV), which can reduce this bias [Peters et al., 2017].240

Setup. In Fig. 4, we posit a high-level causal graphical model based on our knowledge on how241

GANs are trained and evaluated that describes the causal links between the components involved.242

The hyperparameters define the overall architecture of the GAN, hence they can potentially influence243

the initial parameters, the optimizer, and IB metrics (eg., metrics related to width). Given initial244
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Hyperparameters Initial Parameters

Optimizer

Training Data

Final Parameters GAN Performance

Implicit Bias Metrics

Optimization Metrics

Figure 4: Causal graph of GAN training. Each arrow represents a potential causal link between
components of the GAN or the data, and the red arrow represents the causal link of interest.

Figure 5: Distribution of marginal treatment effects evaluated at each final treatment value after
normalization. Each mean effect (red) shows an overall direction. We observe that more BP
reorientation (1st column), larger delta-slopes (2nd) and faster alignment of neural tangent features
(6th) cause G to better learn the data distribution, while larger bias norm (3th), larger Jacobian
Frobenius norm over latent noise (4th), and more activation change (5th) cause G to perform worse.

parameters, an optimizer, and a training dataset, we obtain the final parameters, which determine the245

implicit bias metrics, optimization metrics, and overall performance of the GAN.246

We estimate a non-linear IV model in which the initial parameters are instruments, the implicit bias247

metrics are the treatment variables, the final parameters and optimization metrics are included as248

control variables, and the performance metric is the outcome of interest. Specifically, we use 4-layer249

fully connected networks for both the treatment model and response model in DeepIV [Hartford et al.,250

2017] implemented by EconML [Research, 2019]. Provided that the initial G parameters affect GAN251

performance only through these metrics and the final G parameters, this model will yield the causal252

effects of interest.253

To implement this model, we use the GAN loss as the optimization metric and KL divergence254

as the performance metric. Our implicit bias metrics include Jacobian Frobenius norms (JFNs)255

||∇zG(z)||F of G w.r.t. latent z, averaged over Pz , norms of weights and their updates after training,256

spline parameters (Def. 2) and the change of activation pattern |∆ActG%|, and the effective rank257

of the neural tangent kernels (NTKs) rankeff(NTK) [Baratin et al., 2021]. Since JFNs are large258

at low-quality generated samples [Tanielian et al., 2020], they can be used for rejection sampling259

and measuring the roughness of G. The norms of weights and their updates are essential for many260

analyses on overparameterization to be applicable since they require linearizing the network, or the261

learned weights are close to their initial values [Li and Liang, 2018, Jacot et al., 2018, Chizat et al.,262

2019]. The spline parameters (Def. 2) characterize the function geometry, and |∆ActG%| can be263

used to determine if the network is in the kernel regime [Li and Liang, 2018]. Finally, as it has been264

shown that implicit regularization induces a dynamic alignment of neural tangent features that helps265

feature selection and compression in classification tasks, we include rankeff(NTK) to gauge whether266

this alignment corresponds to the BP alignment.267

Results. The two-stage model has an R2 of 0.7102, indicating it has strong predictive power. We268

monitor the training and validation loss throughout training and find they stay close to each other.269

It is necessary to rule out the possibility of overfitting since NNs can even fit random noise [Zhang270

et al., 2017]. We compute the marginal treatment effects (MTEs) around observed treatment values271

conditional on the control variables. In Fig. 5, we present the distributions of MTEs.272

We observe negative average MTEs of the breakplane (BP) orientation updates, delta-slope norms,273

and effect rank of NTK of G, which means that higher values of these variables improve GAN274

performance. This is consistent with our predictions: i) More orientation updates lead to more BP275

alignment, ii) large delta-slope norm, i.e. more curvature induced by the breakplanes, make G able to276

approximate discontinuities, iii) the effect rank of NTK itself measures alignment of neural tangent277
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(a) H = 128, log KL = −2.197 (b) H = 2048, log KL = −1.371

Figure 6: G learned for 2D Grid mixture of Gaussian data. For each width: Upper Left: Kernel
density estimates of generated data (blue) and real data samples (red). Lower left and Upper right:
The 1st and 2nd dimension G1, G2 of G(z) with breakplanes color-weighted by delta-slopes. For G1,
the output is shown in the horizontal axis to match the upper left panel. Lower right: Color mapping
from z to G(z). A smaller network learns a much simpler G function whose most regions are very
smooth and have discontinuities only in low-density regions, while the larger GAN mismatches the
mode frequencies and has fluctuations in the learned function.

features. With less rank, the features become more correlated and able to express a steeper function278

after combined by the final layer.279

Next, we find that larger bias norms, JFNs over latent noise, and more activation change |∆ActG%|280

cause G to perform worse. Note that there is an interesting contrast between the norm of the hidden281

layer bias and the norm of delta-slopes, which is the product of hidden layer weight and output layer282

weight. This implies different groups of parameters play different roles and we may need different283

adaptivity. Intuitively, when bias is greater, there is less relative change in the outputs for the same284

size change in the inputs. This hurts G, since we would expect it to generate samples at different285

modes instead of mode mixtures even when we smoothly interpolate the latent space.286

While the effect of JFNs is consistent with Tanielian et al. [2020], the effect of |∆ActG%| is positive,287

meaning it causes the model to perform worse. This is surprising, as we typically expect NNs with288

high activation pattern change to be in the adaptive (rich) regime. However, it does not directly289

measure if the breakplanes align with each other to approximate discontinuities. It only measures how290

many times they sweep across a data point, which may depend more on the limiting cycles observed291

in adversarial settings like GANs [Schaefer et al., 2020, Wang et al., 2019].292

Finally, we visualize the actual learned Gr function of H = 128 and H = 2048 with γ = 0.9293

and the best learning rate in Fig. 6. In the smaller network (lower-left and upper-right panels), the294

breakplanes are well aligned, which results in a simple Gr function with discontinuities only in295

low-density regions. In the larger network (upper-left and lower-right panels), the breakplanes remain296

around their initial locations (note their initial orientation is uniformly distributed, which can be297

seen in Sahs et al. [2020] and Appendix B) and the delta-slopes are also reluctant to change, which298

leaves local fluctuations everywhere in the function. Although both networks cover all the modes, the299

mode frequencies in the larger network are mismatched. G2 in the H = 128 case is analogous to a300

‘polytonic’ function: starting from the third quadrant of the z plane to the first, the function value301

increases then decreases.302

5.3 Real-World Datasets303

In Fig. 7, we show results of training DCGANs on MNIST [LeCun et al., 1998]. We observe in Fig.304

7c that the best model with αG,D = 1 has H = 32, γ = 0.999, while the best model with α 6= 1305
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(a) Generated digits. H = 32, γ = 0.999, αG = 1,
αD = 1, IS = 7.7967

(b) Generated digits. H = 32, γ = 1, αG = 0.01,
αD = 1, IS = 6.5527

(c) Left: Inception scores with different H and γ (α = 1), tuned by learning rates. Error bars are calculated for
3 runs. Right: Inception scores with different α and setting (H = 32, γ = 1), tuned by learning rates.

Figure 7: G needs to be adaptive to achieve a high inception score on generating images. This can
be achieved by either i) using a smaller network (H = 32), ii) using a more adaptive optimizer
(γ = 0.999), or iii) using a smaller scale of initialization (αG = 0.01).

has αG = 0.01 and αD = 1. In Appendix B, we also show that the norm of parameter update in306

these models are the largest, indicating stronger adaptivity. Hence, this observation is consistent with307

what we have for the mixture of Gaussian experiments: i) If the networks are too large, ii) if the308

optimizer lacks adaptivity, or iii) if the scale of initialization of the network is large, G will not be309

able to learn a complicated multimodal data distribution. By simply turning down αG, we obtain a310

decent improvement in the generated images (Fig. 7b) while G with large αG produce basically noise311

images only. The fact that smaller αD hurts may indicate that it should not learn too fast, otherwise G312

faces a vanishing gradient issue. Then, no matter how adaptive G is, it will still have mode collapse.313

We argue that this issue is more severe in real-world datasets since the tasks are more difficult, which314

might explain why we do not observe this in synthetic datasets.315

6 Conclusion & Broader Impact316

In this work, we are motivated to get a fundamental understanding of the difficulty in the task for317

the generator (G). In this regard, we first characterize the polytonicity in the optimal G and find that318

allowing polytonicity in G is seemingly more flexible but requires more discontinuities, especially in319

low data density regions. Then, We argue that overparameterization, large scale of initialization, or320

lack of adaptivity shifts G into the kernel regime and prevents it from approximating discontinuities321

and causes bad GAN performance. Then, we support this with causal analysis in synthetic datasets322

and verify it empirically in MNIST. Our findings can help with hyperparameter search for GANs323

since now we know that smaller networks have a more proper IB. Instead of model widths, We can324

save the computational budget for other hyperparameters like learning rates.325

One limitation in this work is that the geometric view using breakplanes needs to be generalized326

to deep networks, in which case breakplanes are not hyperplanes anymore but hypersurfaces [Lee327

et al., 2009]. Although our theory on polytonicity only works on 1D, it is already inspiring us for a328

possible way to improve GANs. Generalizing our theory to higher dimensions will help us enforce329

monotonicity in G, which is likely to improve GAN performance. And a natural future direction of330

this work is to analyze the causal impact of IB on the discriminator and whether it has an IB different331

from NNs in supervised learning since it also needs to guide G besides the classification.332

Since the aim of this work is to provide insights that can promote further improvement on GAN333

performance, we do not see any potential negative impacts of our work.334
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